Acta Crystallographica Section A

Foundations of
 Crystallography

ISSN 0108-7673

Received 2 March 2012
Accepted 18 June 2012

Radial integrals for the magnetic form factor of the 5d electrons of rare earth elements

Kohjiro Kobayashi, ${ }^{\text {a* }}$ Tatsuya Nagao ${ }^{\text {b }}$ and Masahisa Ito ${ }^{\text {b }}$
${ }^{\text {a Advanced Technology Research Center, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, }}$ 376-8515, Japan, and ${ }^{\mathbf{b}}$ Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan. Correspondence e-mail: kobablue@gmail.com

Abstract

The radial integrals $\left\langle j_{L}\right\rangle$, where $L=0,2,4$, for several electronic configurations of the $5 d$ electrons of rare earth elements are calculated using radial wavefunctions from the Hartree-Fock relativistic method in the Cowan program. Gaussian analytical expressions with four exponential terms are fitted to the values for rare earth elements and the fitted coefficients are tabulated. The tables can be used to interpret the form factor measurements for rare earth metals. Using the radial integrals of $\mathrm{Ce} 4 f$ and $5 d$ electrons, the experimental measurement of the magnetic form factor of CePd_{3} is investigated.

(c) 2012 International Union of Crystallography Printed in Singapore - all rights reserved
electrons, $5 d$ electrons contribute to the magnetic structure of some rare earth compounds.

The magnetic form factor can be observed and analysed to model magnetic structures. Polarized neutron diffraction (PND) has provided a traditional probe for magnetic form factor measurements (Bacon, 1975; Lovesey, 1986; Williams, 1988). Owing to the availability of brilliant X-ray sources, X-ray magnetic diffraction (XMD) has enabled us to measure the spin and orbital contributions of the magnetic form factor separately (Blume, 1985; Lovesey, 1987; Blume \& Gibbs, 1988). Using an elliptically polarized white X-ray beam, the experimental accuracy of XMD has become comparable to that of PND (Laundy et al., 1991; Collins et al., 1992; Ito et al., 1995, 2004; Suzuki et al., 2009).

In an analysis of the measured magnetic form factor for studying magnetic structures and magnetic moments, the atomic model is frequently used when the magnetic electrons are considered to be localized. For this atomic model, the radial integrals, $\left\langle j_{L}\right\rangle$, are used to interpret the experimental results. In practical applications, approximated Gaussian analytical expressions for $\left\langle j_{L}\right\rangle$ are widely used. The functional forms of the expressions are parameterized by several fitting parameters. The coefficients were fitted to Gaussian analytical expressions with three exponential terms for the $3 d$ and $4 d$ electrons of transition atoms and ions, the $4 f$ electrons of rare earth ions and the $5 f$ electrons of actinide ions, and these were tabulated (Brown, 2004). Recently, the values of the radial integrals for the $5 d$ electrons of transition atoms and ions have been calculated and the fitted parameters in the Gaussian analytical expressions with four exponential terms were tabulated (Kobayashi et al., 2011). Up to now, a table of the radial integrals for the $5 d$ electrons of rare earth elements has been absent. Because of this absence, the magnetic form factor study of rare earth magnets may have been limited.

The purpose of this paper is to calculate $\left\langle j_{L}\right\rangle$ values to describe the magnetic form factor for the $5 d$ electrons of rare

Table 1
$\left\langle j_{0}\right\rangle$ form factors of the $5 d$ electrons of rare earth ions.

Ions (electronic configuration)	A_{0}	a_{0}	B_{0}	b_{0}	C_{0}	c_{0}	D_{0}	d_{0}	E_{0}	e
$\mathrm{La}^{2+}\left(4 f^{0} 5 d^{1}\right)$	0.5488	63.822	0.7238	34.429	-6.0375	7.092	5.7655	6.839	-0.0008	0.0810
$\mathrm{Ce}^{2+}\left(4 f^{1} 5 d^{1}\right)$	0.4959	63.797	0.7571	34.334	-5.9903	6.595	5.7381	6.370	-0.0009	0.0693
$\mathrm{Ce}^{3+}\left(4 f^{0} 5 d^{1}\right)$	1.2395	35.447	-1.6420	4.939	1.9467	3.715	-0.5481	2.671	0.0020	0.0813
$\operatorname{Pr}^{2+}\left(4 f^{2} 5 d^{1}\right)$	0.4568	63.765	0.7795	34.094	-5.1096	6.186	4.8743	5.950	-0.0011	0.0584
$\mathrm{Pr}^{3+}\left(4 f^{1} 5 d^{1}\right)$	0.7735	40.670	0.6284	21.775	-7.2962	6.114	6.8955	5.866	-0.0015	0.0754
$\mathrm{Pr}^{4+}\left(4 f^{0} 5 d^{1}\right)$	1.3076	27.762	-3.2363	4.278	4.3424	3.471	-1.4168	2.758	0.0018	0.0594
$\mathrm{Nd}^{2+}\left(4 f^{3} 5 d^{1}\right)$	1.2972	27.071	-2.4336	4.208	3.2415	3.271	-1.1081	2.568	0.0016	0.0626
$\mathrm{Nd}^{3+}\left(4 f^{2} 5 d^{1}\right)$	0.6179	41.924	0.7344	23.743	-5.2140	5.726	4.8631	5.427	-0.0016	0.0628
Nd ${ }^{4+}\left(4 f^{1} 5 d^{1}\right)$	1.2972	27.071	-2.4336	4.208	3.2415	3.271	-1.1081	2.568	0.0016	0.0626
$\mathrm{Pm}^{3+}\left(4 f^{3} 5 d^{1}\right)$	0.5149	42.825	0.8077	24.559	-3.6851	5.432	3.3642	5.053	-0.0018	0.0517
$\mathrm{Sm}^{2+}\left(4 f^{5} 5 d^{1}\right)$	0.3908	63.383	0.8062	32.974	-5.5271	5.174	5.3313	5.015	-0.0013	0.0319
$\mathrm{Sm}^{3+}\left(4 f^{4} 5 d^{1}\right)$	0.4725	42.826	0.8301	24.562	-3.0608	5.170	2.7600	4.755	-0.0019	0.0421
$\mathrm{Eu}^{2+}\left(4 f^{6} 5 d^{1}\right)$	0.3827	63.023	0.8044	32.481	-1.8540	5.066	1.6682	4.618	-0.0014	0.0255
$\mathrm{Eu}^{3+}\left(4 f^{5} 5 d^{1}\right)$	0.3784	44.430	0.9025	25.126	-3.1521	4.871	2.8731	4.511	-0.0020	0.0335
$\mathrm{Gd}^{+}\left(4 f^{8} 5 d^{1}\right)$	0.4982	104.440	0.5928	44.451	-14.5061	4.692	14.4155	4.664	-0.0008	0.0200
$\mathrm{Gd}^{+}\left(6 s^{1} 4 f^{7} 5 d^{1}\right)$	0.4132	75.211	0.7389	33.606	-1.8951	4.755	1.7441	4.411	-0.0013	0.0200
$\mathrm{Gd}^{2+}\left(4 f^{7} 5 d^{1}\right)$	0.3745	62.755	0.8026	32.071	-8.6327	4.644	8.4569	4.560	-0.0014	0.0199
$\mathrm{Gd}^{3+}\left(4 f^{6} 5 d^{1}\right)$	0.3587	44.300	0.9082	24.875	-2.6769	4.664	2.4120	4.274	-0.0020	0.0271
$\mathrm{Gd}^{4+}\left(4 f^{5} 5 d^{1}\right)$	0.4512	32.712	0.9183	19.602	-2.8665	4.569	2.4997	4.098	-0.0027	0.0319
$\mathrm{Tb}^{+}\left(4 f^{9} 5 d^{1}\right)$	0.5057	104.335	0.5796	43.869	-1.6061	4.572	1.5212	4.339	-0.0008	0.0193
$\mathrm{Tb}^{+}\left(6 s^{1} 4 f^{9} 5 d^{1}\right)$	0.4131	74.925	0.7311	33.131	-1.2648	4.612	1.1216	4.133	-0.0013	0.0168
$\mathrm{Tb}^{2+}\left(4 f^{8} 5 d^{1}\right)$	0.3734	62.276	0.7955	31.562	-3.4780	4.492	3.3105	4.298	-0.0014	0.0159
$\mathrm{Tb}^{3+}\left(4 f^{7} 5 d^{1}\right)$	0.3223	44.892	0.9303	24.826	-3.9948	4.375	3.7443	4.140	-0.0021	0.0204
$\mathrm{Tb}^{4+}\left(4 f^{6} 5 d^{1}\right)$	0.3614	33.730	0.9844	19.945	-2.6536	4.355	2.3105	3.892	-0.0028	0.0250
$\mathrm{Dy}^{2+}\left(4 f^{9} 5 d^{1}\right)$	0.3754	61.715	0.7859	31.049	-1.7452	4.388	1.5853	4.024	-0.0014	0.0131
$\mathrm{Dy}^{3+}\left(4 f^{8} 5 d^{1}\right)$	0.3014	45.110	0.9392	24.622	-3.2549	4.203	3.0163	3.936	-0.0021	0.0158
$\mathrm{Ho}^{3+}\left(4 f^{9} 5 d^{1}\right)$	0.2974	44.755	0.9335	24.262	-2.3286	4.079	2.0998	3.728	-0.0021	0.0127
$\mathrm{Er}^{3+}\left(4 f^{10} 5 d^{1}\right)$	0.2916	44.550	0.9304	23.933	-1.3854	4.035	1.1655	3.468	-0.0021	0.0103
$\mathrm{Tm}^{2+}\left(4 f^{12} 5 d^{1}\right)$	0.4067	59.305	0.7386	29.168	-0.3795	4.593	0.2356	2.956	-0.0015	0.0082
$\mathrm{Tm}^{3+}\left(4 f^{11} 5 d^{1}\right)$	0.3302	42.750	0.8905	23.057	-0.5894	4.397	0.3708	2.923	-0.0022	0.0086
$\mathrm{Tm}^{4+}\left(4 f^{10} 5 d^{1}\right)$	0.2406	35.005	1.0453	19.560	-4.5727	3.572	4.2895	3.383	-0.0027	0.0087
$\mathrm{Yb}^{2+}\left(4 f^{13} 5 d^{1}\right)$	0.4170	58.627	0.7233	28.615	-0.3308	4.553	0.1919	2.742	-0.0015	0.0078
$\mathrm{Yb}^{3+}\left(4 f^{12} 5 d^{1}\right)$	0.3498	41.749	0.8666	22.455	-0.4923	4.434	0.2780	2.671	-0.0022	0.0078
$\mathrm{Lu}^{2+}\left(4 f^{14} 5 d^{1}\right)$	0.4216	58.262	0.7131	28.218	-0.3048	4.446	0.1715	2.593	-0.0015	0.0078
$\mathrm{Lu}^{3+}\left(4 f^{13} 5 d^{1}\right)$	0.3217	42.404	0.8845	22.448	-0.4726	4.258	0.2686	2.566	-0.0022	0.0064

earth elements. These values are important in finding magnetic contributions from individual atoms in rare earth magnets. As an example of a practical application of these radial integrals, we revisit the magnetic form factor of CePd_{3} where the contribution from the Ce $5 d$ electrons, in addition to that from the Ce $4 f$ electrons, has been suggested (Stassis et al., 1982).

The remainder of this paper is organized as follows. In §2, the formalism of the calculation and fitting method is described. In $\S 3$, our results for the radial integrals of the $5 d$ electrons of rare earth elements are presented and fitted parameters in the Gaussian analytical expressions are tabulated. Finally, an application to the magnetic form factor measurement of CePd_{3} is presented. In $\S 4$, we summarize our research.

2. Method of calculation

The magnetic form factor for the unpaired electrons with quantum number $n l$ in the non-relativistic framework is expressed as

$$
\begin{equation*}
F(\mathbf{k})=\mu\left[\left\langle j_{0}(k)\right\rangle+\sum_{L=2}^{2 l} c_{L}\left\langle j_{L}(k)\right\rangle\right], \tag{1}
\end{equation*}
$$

where \mathbf{k} is the scattering vector, μ is the total magnetic moment and the summation is taken for the values $2, \ldots, 2 l$. The coefficients c_{L} generally depend on electronic configurations and experimental conditions (Freeman et al., 1976). The radial integrals for the unpaired electrons using the radial wavefunction $R_{n l}(r)$ are defined by

$$
\begin{equation*}
\left\langle j_{L}\left(s=\frac{k}{4 \pi}\right)\right\rangle=\int_{0}^{\infty} R_{n l}^{2}(r) j_{L}(k r) r^{2} \mathrm{~d} r \tag{2}
\end{equation*}
$$

where $j_{L}(k r)$ is the spherical Bessel function of the L th order and the length of the scattering vector is denoted by $k=4 \pi s=(4 \pi \sin \theta) / \lambda$.

We employ the Hartree-Fock relativistic (HFR) method in the Cowan program (Cowan, 1981) to generate the radial wavefunctions of equation (2). In the HFR calculation, the relativistic effects of the mass-velocity and Darwin terms are added to the non-relativistic Hartree-Fock equation while the spin-orbit term is neglected.

We use the Gaussian analytical expressions with four exponential terms to find fitted parameters of the values of the radial integrals from the HFR method (Kobayashi et al., 2011). This follows International Tables in Brown (2004), where the Gaussian analytical expressions with three exponential terms were used. For example, we fit the following Gaussian analy-

Table 2
$\left\langle j_{2}\right\rangle$ form factors of the $5 d$ electrons of rare earth ions.

Ions (electronic configuration)	A_{2}	a_{2}	B_{2}	b_{2}	C_{2}	c_{2}	D_{2}	d_{2}	E_{2}	e
$\mathrm{La}^{2+}\left(4 f^{0} 5 d^{1}\right)$	12.9681	48.694	9.8018	22.831	-0.5443	4.354	0.2584	2.743	-0.0001	0.0178
$\mathrm{Ce}^{2+}\left(4 f^{1} 5 d^{1}\right)$	12.6550	47.222	9.3025	21.878	-0.6896	3.762	0.4405	2.849	0.0000	0.0189
$\mathrm{Ce}^{3+}\left(4 f^{0} 5 d^{1}\right)$	8.7013	35.824	8.5894	18.242	-0.6110	4.306	0.2181	2.336	-0.0003	0.0093
$\mathrm{Pr}^{2+}\left(4 f^{2} 5 d^{1}\right)$	12.4487	45.891	8.8239	21.010	-17.0630	3.120	16.8417	3.095	0.0001	0.0219
$\mathrm{Pr}^{3+}\left(4 f^{1} 5 d^{1}\right)$	8.5203	34.877	8.2069	17.602	-0.5841	3.958	0.2347	2.302	-0.0002	0.0107
$\mathrm{Pr}^{4+}\left(4 f^{0} 5 d^{1}\right)$	6.3910	28.309	7.6746	15.204	-0.6973	4.010	0.2304	2.119	-0.0004	0.0057
$\mathrm{Nd}^{2+}\left(4 f^{3} 5 d^{1}\right)$	6.2640	27.628	7.3661	14.731	-0.6560	3.743	0.2354	2.073	-0.0003	0.0072
$\mathrm{Nd}^{3+}\left(4 f^{2} 5 d^{1}\right)$	8.3541	34.036	7.8675	17.031	-0.5998	3.584	0.2896	2.326	0.0000	0.0109
$\mathrm{Nd}^{4+}\left(4 f^{1} 5 d^{1}\right)$	6.2640	27.628	7.3661	14.731	-0.6560	3.743	0.2354	2.073	-0.0003	0.0072
$\mathrm{Pm}^{3+}\left(4 f^{3} 5 d^{1}\right)$	8.2028	33.286	7.5637	16.518	-0.8756	3.105	0.6007	2.486	0.0002	0.0116
$\mathrm{Sm}^{2+}\left(4 f^{5} 5 d^{1}\right)$	12.0956	42.678	7.6076	18.857	-1.4355	2.749	1.2720	2.547	0.0001	0.0268
$\mathrm{Sm}^{3+}\left(4 f^{4} 5 d^{1}\right)$	8.1212	32.502	7.2340	15.990	-5.8639	2.698	5.6142	2.630	0.0003	0.0136
$\mathrm{Eu}^{2+}\left(4 f^{6} 5 d^{1}\right)$	12.0033	41.860	7.2896	18.289	-1.4882	2.592	1.3411	2.425	0.0000	0.0288
$\mathrm{Eu}^{3+}\left(4 f^{5} 5 d^{1}\right)$	8.0653	31.753	6.9151	15.484	-5.5701	2.578	5.3406	2.515	0.0003	0.0143
$\mathrm{Gd}^{+}\left(4 f^{8} 5 d^{1}\right)$	22.2510	65.913	7.5925	23.045	-3.5803	1.952	3.5355	1.930	-0.0010	0.0818
$\mathrm{Gd}^{+}\left(6 s^{1} 4 f^{7} 5 d^{1}\right)$	14.0295	48.586	7.3596	18.927	-5.1053	2.242	5.0055	2.211	-0.0004	0.0507
$\mathrm{Gd}^{2+}\left(4 f^{7} 5 d^{1}\right)$	11.9202	41.129	7.0021	17.772	-5.3982	2.392	5.2663	2.354	-0.0001	0.0315
$\mathrm{Gd}^{3+}\left(4 f^{6} 5 d^{1}\right)$	8.0082	31.074	6.6281	15.022	-1.9932	2.515	1.7825	2.354	0.0003	0.0146
$\mathrm{Gd}^{4+}\left(4 f^{5} 5 d^{1}\right)$	5.8839	25.328	6.3297	13.143	-1.1650	2.597	0.8829	2.219	0.0004	0.0077
$\mathrm{Tb}^{+}\left(4 f^{9} 5 d^{1}\right)$	22.4050	65.581	7.3158	22.565	-4.9513	1.745	4.9149	1.732	-0.0014	0.0880
$\mathrm{Tb}^{+}\left(6 s^{1} 4 f^{8} 5 d^{1}\right)$	14.0011	48.000	7.0994	18.468	-0.6304	2.188	0.5431	1.960	-0.0007	0.0543
$\mathrm{Tb}^{2+}\left(4 f^{8} 5 d^{1}\right)$	11.8504	40.480	6.7412	17.303	-11.6794	2.248	11.5615	2.233	-0.0002	0.0339
$\mathrm{Tb}^{3+}\left(4 f^{7} 5 d^{1}\right)$	7.9534	30.456	6.3665	14.596	-0.8418	2.508	0.6482	2.145	0.0002	0.0158
$\mathrm{Tb}^{4+}\left(4 f^{6} 5 d^{1}\right)$	5.8406	24.788	6.0831	12.775	-2.0431	2.400	1.7828	2.221	0.0004	0.0088
$\mathrm{Dy}^{2+}\left(4 f^{9} 5 d^{1}\right)$	11.7905	39.898	6.5024	16.874	-11.5993	2.115	11.4943	2.102	-0.0003	0.0359
Dy ${ }^{3+}\left(4 f^{8} 5 d^{1}\right)$	7.8866	29.902	6.1361	14.212	-12.5093	2.229	12.3329	2.210	0.0002	0.0177
$\mathrm{Ho}^{3+}\left(4 f^{9} 5 d^{1}\right)$	7.8279	29.392	5.9224	13.854	-3.0002	2.151	2.8393	2.080	0.0001	0.0183
$\mathrm{Er}^{3+}\left(4 f^{10} 5 d^{1}\right)$	7.7700	28.922	5.7263	13.523	-4.1104	2.035	3.9640	1.990	0.0000	0.0200
$\mathrm{Tm}^{2+}\left(4 f^{12} 5 d^{1}\right)$	11.6672	38.468	5.8888	15.774	-4.8013	1.717	4.7296	1.697	-0.0012	0.0439
$\mathrm{Tm}^{3+}\left(4 f^{11} 5 d^{1}\right)$	7.7142	28.488	5.5450	13.214	-5.7987	1.923	5.6660	1.895	-0.0002	0.0209
$\mathrm{Tm}^{4+}\left(4 f^{10} 5 d^{1}\right)$	5.6664	23.000	5.2790	11.534	-3.2389	1.988	3.0496	1.919	0.0002	0.0166
$\mathrm{Yb}^{2+}\left(4 f^{13} 5 d^{1}\right)$	11.6437	38.074	5.7103	15.455	-2.9992	1.582	2.9369	1.554	-0.0017	0.0462
$\mathrm{Yb}^{3+}\left(4 f^{12} 5 d^{1}\right)$	7.6609	28.088	5.3775	12.926	-5.9455	1.817	5.8255	1.793	-0.0004	0.0223
$\mathrm{Lu}^{2+}\left(4 f^{14} 5 d^{1}\right)$	11.6308	37.717	5.5427	15.158	-6.0682	1.432	6.0147	1.420	-0.0024	0.0504
$\mathrm{Lu}^{3+}\left(4 f^{13} 5 d^{1}\right)$	7.6106	27.715	5.2212	12.656	-2.1969	1.729	2.0887	1.671	-0.0007	0.0236

tical expressions to the calculated values for $\left\langle j_{L}\right\rangle$ of the $5 d$ electrons:

$$
\begin{align*}
& \left\langle j_{L}(s)\right\rangle= \\
& \begin{cases}A_{L} \exp \left(-a_{L} s^{2}\right)+B_{L} \exp \left(-b_{L} s^{2}\right) & \\
\quad+C_{L} \exp \left(-c_{L} s^{2}\right)+D_{L} \exp \left(-d_{L} s^{2}\right)+E_{L}, & L=0 \\
s^{2}\left[A_{L} \exp \left(-a_{L} s^{2}\right)+B_{L} \exp \left(-b_{L} s^{2}\right)\right. & \\
\left.\quad+C_{L} \exp \left(-c_{L} s^{2}\right)+D_{L} \exp \left(-d_{L} s^{2}\right)+E_{L}\right], & L=2,4\end{cases} \tag{3}
\end{align*}
$$

where $A_{L}, a_{L}, B_{L}, b_{L}, C_{L}, c_{L}, D_{L}, d_{L}, E_{L}$ are fitting parameters for each value of L. The values of the parameters are determined by minimizing the following value:

$$
\begin{align*}
e= & 100\left(\left\{\sum _ { i = 1 } ^ { N } \left[\left\langle j_{L}\left(s_{i}\right)\right\rangle^{\mathrm{HFR}}\right.\right.\right. \\
& \left.\left.\left.-\left\langle j_{L}\left(s_{i}, A_{L}, a_{L}, B_{L}, b_{L}, C_{L}, c_{L}, D_{L}, d_{L}, E_{L}\right)\right\rangle\right]^{2}\right\} / N\right)^{1 / 2}, \tag{5}
\end{align*}
$$

where the sum is taken over the computed points used, N is the number of computed points, $\left\langle j_{L}\left(s_{i}\right)\right\rangle^{\mathrm{HFR}}$ are the computed values of the radial integrals using HFR, and $\left\langle j_{L}\left(s_{i}, A_{L}, a_{L}, B_{L}, b_{L}, C_{L}, c_{L}, D_{L}, d_{L}, E_{L}\right)\right\rangle$ are expressed as in equations (3) and (4), where the parameter dependence is explicitly expressed. The numerical values of the radial inte-
grals from the HFR method are calculated from 0 to $1.5 \AA^{-1}$ for $s=(\sin \theta) / \lambda$ at an interval of $0.01 \AA^{-1}$, and then the above Gaussian analytical expressions are fitted to the numerical values.

3. Results and discussion

First, the fitted coefficients of calculated radial integrals are tabulated for possible electronic configurations and valence numbers of the $5 d$ electrons in rare earth metal compounds. Table 1 shows the fitting parameters in equation (3) for $\left\langle j_{0}\right\rangle$, and Tables 2 and 3 list the fitting parameters in equation (4) for $\left\langle j_{2}\right\rangle$ and $\left\langle j_{4}\right\rangle$, respectively. The e values defined by equation (5) are given in these tables. The electronic states with a high valence number may be described more correctly by the Gaussian analytical expressions than those with a low valence number because the fitting parameter e decreases as the valence number increases. This tendency was seen for the calculation of the $5 d$ electrons of transition elements (Kobayashi et al., 2011).

We consider the magnetic form factor of Ce in CePd_{3}, which is a rare earth intermediate-valence compound (Lawrence, 2008) and has the cubic AuCu_{3}-type structure. Stassis et al. (1982) interpreted the observed magnetic form factor of CePd_{3} at $T=4.2 \mathrm{~K}$ and argued that it might have contributions

Table 3
$\left\langle j_{4}\right\rangle$ form factors of the $5 d$ electrons of rare earth ions.

Ions (electronic configuration)	A_{4}	a_{4}	B_{4}	b_{4}	C_{4}	c_{4}	D_{4}	d_{4}	E_{4}	e
$\mathrm{La}^{2+}\left(4 f^{0} 5 d^{1}\right)$	-4.5158	53.905	3.2057	16.650	6.5227	6.913	-5.0984	6.414	0.0030	0.0432
$\mathrm{Ce}^{2+}\left(4 f^{1} 5 d^{1}\right)$	-4.2564	53.290	3.1514	15.564	4.8631	6.428	-3.6555	5.879	0.0029	0.0326
$\mathrm{Ce}^{3+}\left(4 f^{0} 5 d^{1}\right)$	-3.4280	40.945	3.4454	9.613	-1.7690	0.878	1.7363	0.845	-0.0112	0.0245
$\mathrm{Pr}^{2+}\left(4 f^{2} 5 d^{1}\right)$	-4.0440	52.865	3.1023	14.699	16.7869	5.775	-15.7537	5.659	0.0027	0.0242
$\mathrm{Pr}^{3+}\left(4 f^{1} 5 d^{1}\right)$	-3.2801	40.342	3.2838	9.275	-0.3302	0.693	0.3218	0.526	-0.0262	0.0256
$\operatorname{Pr}^{4+}\left(4 f^{0} 5 d^{1}\right)$	-3.0144	29.731	3.0921	8.040	-1.7853	1.018	1.7254	0.978	-0.0067	0.0111
$\mathrm{Nd}^{2+}\left(4 f^{3} 5 d^{1}\right)$	-2.8914	29.223	2.9558	7.788	-2.3133	0.821	2.2706	0.794	-0.0122	0.0159
$\mathrm{Nd}^{3+}\left(4 f^{2} 5 d^{1}\right)$	-3.4188	35.732	2.4046	11.623	4.7757	5.234	-3.6967	4.807	0.0034	0.0210
$\mathrm{Nd}^{4+}\left(4 f^{1} 5 d^{1}\right)$	-2.8914	29.223	2.9558	7.788	-1.0406	0.837	0.9980	0.776	-0.0122	0.0123
$\mathrm{Pm}^{3+}\left(4 f^{3} 5 d^{1}\right)$	-3.2587	35.415	2.4193	10.957	6.6210	4.804	-5.7219	4.569	0.0033	0.0159
$\mathrm{Sm}^{2+}\left(4 f^{5} 5 d^{1}\right)$	-3.5892	52.139	2.9096	13.054	4.6201	4.925	-3.8766	4.647	0.0023	0.0090
$\mathrm{Sm}^{3+}\left(4 f^{4} 5 d^{1}\right)$	-3.1219	35.108	2.4059	10.444	4.7313	4.540	-3.9603	4.264	0.0031	0.0117
$\mathrm{Eu}^{2+}\left(4 f^{6} 5 d^{1}\right)$	-3.4800	51.945	2.8285	12.745	1.5317	5.052	-0.8219	4.111	0.0022	0.0078
$\mathrm{Eu}^{3+}\left(4 f^{5} 5 d^{1}\right)$	-3.0029	34.814	2.3781	10.031	5.4031	4.255	-4.7274	4.056	0.0029	0.0092
$\mathrm{Gd}^{+}\left(4 f^{8} 5 d^{1}\right)$	-4.8713	104.143	3.7302	21.468	1.2023	8.378	-0.0196	2.098	0.0014	0.0130
$\mathrm{Gd}^{+}\left(6 s^{1} 4 f^{7} 5 d^{1}\right)$	-3.4617	66.516	2.6499	14.221	1.0035	6.279	-0.1055	3.023	0.0019	0.0075
$\mathrm{Gd}^{2+}\left(4 f^{7} 5 d^{1}\right)$	-3.3883	51.671	2.7278	12.570	1.0357	5.277	-0.3195	3.576	0.0020	0.0071
$\mathrm{Gd}^{3+}\left(4 f^{6} 5 d^{1}\right)$	-2.8981	34.532	2.3381	9.696	4.9222	4.040	-4.3145	3.851	0.0028	0.0077
$\mathrm{Gd}^{4+}\left(4 f^{5} 5 d^{1}\right)$	-2.6251	26.189	2.0430	8.166	2.0627	3.948	-1.4456	3.441	0.0034	0.0084
$\mathrm{Tb}^{+}\left(4 f^{9} 5 d^{1}\right)$	-4.8446	105.564	3.7187	21.493	1.1716	8.254	-0.0140	1.741	0.0014	0.0138
$\mathrm{Tb}^{+}\left(6 s^{1} 4 f^{8} 5 d^{1}\right)$	-3.3986	66.558	2.5566	14.238	0.9966	6.354	-0.0687	2.640	0.0018	0.0064
$\mathrm{Tb}^{2+}\left(4 f^{8} 5 d^{1}\right)$	-3.3137	51.300	2.6051	12.543	0.9119	5.572	-0.1465	3.041	0.0019	0.0067
$\mathrm{Tb}^{3+}\left(4 f^{7} 5 d^{1}\right)$	-2.8051	34.263	2.2899	9.422	2.9540	3.912	-2.3939	3.623	0.0026	0.0058
$\mathrm{Tb}^{4+}\left(4 f^{6} 5 d^{1}\right)$	-2.5322	25.901	2.0176	7.883	1.3901	3.855	-0.8421	3.162	0.0033	0.0075
$\mathrm{Dy}^{2+}\left(4 f^{9} 5 d^{1}\right)$	-3.2454	51.015	2.5045	12.508	0.8905	5.686	-0.0924	2.673	0.0019	0.0062
$\mathrm{Dy}^{3+}\left(4 f^{8} 5 d^{1}\right)$	-2.7206	34.002	2.2384	9.188	2.3604	3.779	-1.8355	3.448	0.0024	0.0063
$\mathrm{Ho}^{3+}\left(4 f^{9} 5 d^{1}\right)$	-2.6442	33.767	2.1895	8.981	6.7096	3.527	-6.2142	3.430	0.0023	0.0047
$\mathrm{Er}^{3+}\left(4 f^{10} 5 d^{1}\right)$	-2.5747	33.543	2.1374	8.808	4.3319	3.435	-3.8556	3.294	0.0021	0.0048
$\mathrm{Tm}^{2+}\left(4 f^{12} 5 d^{1}\right)$	-3.0741	50.565	2.2967	12.375	0.8709	5.675	-0.0368	1.903	0.0017	0.0045
$\mathrm{Tm}^{3+}\left(4 f^{11} 5 d^{1}\right)$	-2.5119	33.318	2.0781	8.676	1.1694	3.573	-0.6974	2.972	0.0020	0.0046
$\mathrm{Tm}^{4+}\left(4 f^{10} 5 d^{1}\right)$	-2.2376	24.879	1.8856	7.074	1.9119	3.067	-1.5307	2.802	0.0026	0.0052
$\mathrm{Yb}^{2+}\left(4 f^{13} 5 d^{1}\right)$	-3.0265	50.522	2.2491	12.330	0.8621	5.625	-0.0285	1.693	0.0017	0.0058
$\mathrm{Yb}^{3+}\left(4 f^{12} 5 d^{1}\right)$	-2.4567	33.073	2.0029	8.603	0.7458	3.803	-0.2541	2.601	0.0019	0.0048
$\mathrm{Lu}^{2+}\left(4 f^{14} 5 d^{1}\right)$	-2.9837	50.531	2.2096	12.288	0.8518	5.567	-0.0224	1.492	0.0017	0.0049
$\mathrm{Lu}^{3+}\left(4 f^{13} 5 d^{1}\right)$	-2.4054	32.850	1.9337	8.538	0.6672	3.906	-0.1577	2.358	0.0018	0.0049

arising from the $4 f$ and $5 d$ electrons of Ce. Such a contribution may arise as a result of the relativistic formulation and by using the $4 f$ integrals derived from relativistic wavefunctions and $5 d$ radial integrals which have been obtained from DiracSlater wavefunctions. The accuracy of Dirac-Slater wavefunctions is less than that of HFR wavefunctions or relativistic wavefunctions. Recently, Givord, Galéra et al. (2004) have concluded from their magnetic form factor measurement that the contribution of the $5 d$ electrons of Ce to the magnetic form factor at $T=1.7 \mathrm{~K}$ could have been anticipated from the analysis based on the dipole approximation using only $4 f$ radial integrals from relativistic wavefunctions (Freeman \& Desclaux, 1979).

In order to revisit the experimental data of Givord, Galéra et al. (2004), we use the dipole approximation, in which the magnetic form factor F for unpaired localized electrons is expressed as (Balcar \& Lovesey, 1989)

$$
\begin{equation*}
F_{\mathrm{dipole}}^{n l}(s)=\left(\mu_{\mathrm{S}, n l}+\mu_{\mathrm{L}, n l}\right)\left\langle j_{0}(s)\right\rangle+\mu_{\mathrm{L}, n l}\left\langle j_{2}(s)\right\rangle \tag{6}
\end{equation*}
$$

where $\mu_{\mathrm{S}, n l}$ and $\mu_{\mathrm{L}, n l}$ are the contributions of the spin and orbital magnetic moments of electrons with the state nl, respectively. We use the following two forms for the magnetic form factor analysis: the dipole approximation in $4 f$ electrons, $F_{\text {dipole }}^{4 f}$, and the $4 f$ dipole approximation with spin contributions
from $5 d$ electrons, $F_{\text {dipole }}^{4 f}+F_{\text {spin }}^{5 d}$. Here $F_{\text {spin }}^{5 d}$ in equation (6) is obtained with $\mu_{\mathrm{L}, 5 d}=0$, i.e. by assuming the quenching of the orbital angular momentum.

In Table 4 we show the radial integrals of $\mathrm{Ce}^{3+} 5 d$ and $4 f$ wavefunctions using the HFR method, evaluated in the $5 d^{1}$ and $4 f^{1}$ configurations, respectively, and these are employed in our magnetic form factor analysis. For the $\mathrm{Ce}^{3+} 4 f^{1}$ configuration, we get essentially the same values as Freeman \& Desclaux (1979). The fitted Gaussian analytical expressions are plotted in Fig. 1 for the $\mathrm{Ce}^{3+} 5 d^{1}$ configuration with the numerical values of the radial integrals at an interval of $0.05 \AA^{-1}$. The radial integrals of $5 d$ electrons decrease more rapidly as a function of s than those of $4 f$ electrons.

To find the best fitting functions, the least-squares fitting method is used (Galassi et al., 2009). $\mu_{\mathrm{S}, 4 f}$ and $\mu_{\mathrm{L}, 4 f}$ are fitting parameters for $F_{\text {dipole }}^{4 f}$, and $\mu_{\mathrm{S}, 4 f}, \mu_{\mathrm{L}, 4 f}$ and $\mu_{\mathrm{S}, 5 d}$ are parameters for $F_{\text {dipole }}^{4 f}+F_{\text {spin }}^{5 d}$. The best parameter set is found by minimizing χ^{2}, which is defined by

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{N_{e}} w_{i}\left(y_{i}-F\right)^{2}, \tag{7}
\end{equation*}
$$

where N_{e} is the number of measured experimental points, $w_{i}=1 / \sigma_{i}^{2}$ is the inverse square of the error of the experi-

Table 4
The values of radial integrals for $\mathrm{Ce}^{3+}(5 d)$ and $\mathrm{Ce}^{3+}(4 f)$.

$\sin \theta / \lambda$	$\left\langle j_{0}\right\rangle_{5 d}$	$\left\langle j_{2}\right\rangle_{5 d}$	$\left\langle j_{4}\right\rangle_{5 d}$	$\left\langle j_{0}\right\rangle_{4 f}$	$\left\langle j_{2}\right\rangle_{4 f}$	$\left\langle j_{4}\right\rangle_{4 f}$	$\left\langle j_{6}\right\rangle_{4 f}$
0.00	1.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000
0.05	0.8989	0.0396	0.0006	0.9763	0.0094	0.0000	0.0000
0.10	0.6488	0.1288	0.0082	0.9097	0.0351	0.0007	0.0000
0.15	0.3648	0.2077	0.0308	0.8117	0.0708	0.0032	0.0001
0.20	0.1415	0.2359	0.0654	0.6969	0.1088	0.0085	0.0006
0.25	0.0124	0.2124	0.0990	0.5786	0.1430	0.0168	0.0016
0.30	-0.0376	0.1595	0.1197	0.4663	0.1696	0.0274	0.0036
0.35	-0.0403	0.1016	0.1233	0.3660	0.1872	0.0394	0.0067
0.40	-0.0230	0.0535	0.1125	0.2800	0.1962	0.0515	0.0108
0.45	-0.025	0.0203	0.0932	0.2086	0.1977	0.0628	0.0156
0.50	0.0135	0.0012	0.0710	0.1509	0.1935	0.0727	0.0209
0.60	0.0266	-0.0086	0.0321	0.0698	0.1735	0.0869	0.0317
0.70	0.0226	-0.0019	0.0087	0.0226	0.1464	0.0936	0.0415
0.80	0.0134	0.0064	-0.0011	-0.0026	0.1185	0.0940	0.0490
0.90	0.0052	0.0113	-0.0025	-0.0144	0.0930	0.0900	0.0539
1.00	0.0002	0.0125	-0.0003	-0.0186	0.0713	0.0832	0.0565
1.10	-0.0019	0.0112	0.0028	-0.0187	0.0536	0.0750	0.0570
1.20	-0.0020	0.0087	0.0052	-0.0169	0.0396	0.0663	0.0559
1.30	-0.0011	0.0060	0.0067	-0.0143	0.0289	0.0577	0.0536
1.40	0.0003	0.0036	0.0072	-0.0116	0.0207	0.0496	0.0505
1.50	0.0016	0.0017	0.0069	-0.0091	0.0146	0.0423	0.0470

mental data σ_{i}, y_{i} are the experimental data, and F are the fitted functions, $F_{\text {dipole }}^{4 f}$ or $F_{\text {dipole }}^{4 f}+F_{\text {spin }}^{5 d}$.

Fig. 2 shows the fitted lines with the experimental data of Givord, Galéra et al. (2004) at $T=1.7 \mathrm{~K}$. The fitted line of $F_{\text {dipole }}^{4 f}$ deviates from the experimental points, especially for the first two reflections in the region $s<0.2 \AA^{-1}$. The inclusion of the contribution from the $5 d$ electron obviously improves the description of the experimental data, in particular in the low-s region; from this we are inclined to conclude that the inclusion of a $5 d$ electron contribution is indispensable to get a better fitting of the Ce magnetic form factor at $T=1.7 \mathrm{~K}$.

However, since the dipole approximation gives a poor result on several occasions, we should be cautious in deriving a conclusion from the result. To go beyond the dipole approximation for the case of a Ce ion in CePd_{3}, the crystal electric field (CEF) splitting is one of the inevitable factors to be taken into account. The presence of the CEF causes an anisotropic

Figure 1
Comparison between the analytical expressions using the coefficients in the table (lines) and the calculated values (+ for $\left\langle j_{0}\right\rangle, \times$ for $\left\langle j_{2}\right\rangle, \bullet$ for $\left\langle j_{4}\right\rangle$) of the radial integrals of the $\mathrm{Ce}^{3+} 5 d^{1}$ configuration. The calculated values are plotted at intervals of $0.05 \AA^{-1}$.
magnetic distribution and the magnetic form factor needs higher-order terms in equation (1) including their angular dependence (Lovesey, 1986; Balcar \& Lovesey, 1989). For example, the treatment beyond the dipole approximation on Ce^{3+} in $\mathrm{CePd}_{2} \mathrm{Si}_{2}$ improved the form factor significantly, though the dipole approximation still gave an acceptable result at small s (Rotter \& Boothroyd, 2009). Another complication involved in the present material is the valence mixing of the $\mathrm{Ce} 4 f$ electron. Several experiments have shown that the Ce ion in CePd_{3} is considered in the $4 f^{0}$ and $4 f^{1}$ configurations (Kanai et al., 2001). Although the effect of the valence mixing is phenomenologically taken into account in our treatment by including the $5 d$ as well as $4 f$ radial integrals (Kennedy et al., 1993), more sophisticated theory should be employed for the correct description of the valence mixing state (Lawrence, 2008; Ayuel \& de Châtel, 2000). Inclusion of these complications beyond the dipole approximation is intriguing and needs to be tackled in a future study.

4. Conclusions

The radial integrals of the $5 d$ electrons of rare earth ions were calculated using the HFR method in the Cowan program and the fitted coefficients in the Gaussian analytical expressions were tabulated. The table of the coefficients in the Gaussian analytical expressions can be used for the interpretation of magnetic form factor measurements of the $5 d$ electrons in rare earth magnets.

In order to exemplify the utility of our calculated table, the radial integrals of the Ce^{3+} ion were used to analyse the experimental magnetic form factor of CePd_{3} and the contributions from the $4 f$ and $5 d$ electrons of Ce were studied. The fitting shows that the $5 d$ electrons may play a critical role in the measured magnetic form factor. In summary, inclusion of the $5 d$ contribution may open up a new possibility to describe the magnetic properties of other rare earth magnets. Our research may help in the study of these magnets.

Figure 2
Ce magnetic form factor at $T=1.7 \mathrm{~K}$ in CePd_{3}. Dots (\bullet) are experimental data with errors in Givord, Galéra et al. (2004), where the magnetization measurement was 0.0143 (2) $\mu_{\mathrm{B}} / \mathrm{Ce}$. The solid ($F_{\text {dipole }}^{4 f}$) and dashed $\left(F_{\text {dipole }}^{4 f}+F_{\text {spin }}^{5 d}\right)$ lines are different fittings to the Ce magnetic form factor.

KK would like to thank R. M. Galéra for explaining the experimental data. The present research was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and a grant from the Advanced Technology Research Center at Gunma University. The authors would like to thank Dr H. Sakurai for useful discussions. KK would like to acknowledge the use of computational facilities of the Advanced Technology Research Center at Gunma University.

References

Alonso, J. A., Boucherle, J. X., Givord, F., Schweizer, J., Gillon, B. \& Lejay, P. (1998). J. Magn. Magn. Mater. 177-181, 1048-1049.
Ayuel, K. \& de Châtel, P. F. (2000). Phys. Rev. B, 61, 15213.
Bacon, G. E. (1975). Neutron Diffraction. Oxford University Press.
Balcar, E. \& Lovesey, S. W. (1989). Theory of Magnetic Neutron and Photon Scattering. Oxford University Press.
Blume, M. (1985). J. Appl. Phys. 57, 3615-3618.
Blume, M. \& Gibbs, D. (1988). Phys. Rev. B, 37, 1779-1789.
Brown, P. J. (2004). Magnetic form factors. International Tables for Crystallography, Vol. C, Mathematical, Physical and Chemical Tables, 3rd ed., pp. 454-461. Dordrecht: Kluwer Academic Publishers.
Collins, S. P., Laundy, D. \& Rollason, A. J. (1992). Philos. Mag. B65, 37-46.
Cowan, R. (1981). The Theory of Atomic Structure and Spectra. Berkeley: University of California Press.
Freeman, A. J. \& Desclaux, J. P. (1979). J. Magn. Magn. Mater. 12, 1121.

Freeman, A. J., Desclaux, J. P., Lander, G. H. \& Faber, J. (1976). Phys. Rev. B, 13, 1168-1176.
Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M. \& Rossi, F. (2009). GNU Scientific Library Reference Manual, 3rd ed., pp. 443-454. Bristol: Network Theory Limited.
Galatanu, A., Yamamoto, E., Okubo, T., Yamada, M., Thamizhavel, A., Takeuchi, T., Sugiyama, K., Inada, Y. \& Onuki, Y. (2003). J. Phys. Condens. Matter, 15, S2187-S2191.
Giorgetti, C., Pizzini, S., Dartyge, E., Fontaine, A., Baudelet, F., Brouder, C., Bauer, P., Krill, G., Miraglia, S., Fruchart, D. \& Kappler, J. P. (1993). Phys. Rev. B, 48, 12732-12742.

Givord, F., Boucherle, J. X., Lelievre-Berna, E. \& Lejay, P. (2004). J. Phys. Condens. Matter, 16, 1211-1230.
Givord, F., Boucherle, J. X., Murani, A. P., Bewley, R., Galera, R. M. \& Lejay, P. (2007). J. Phys. Condens. Matter, 19, 506210.
Givord, F., Galéra, R. M., Murani, A. P. \& Lelièvre-Berna, E. (2004). Physica B, 350, E103-E105.
Ito, M., Itoh, F., Tanaka, Y., Koizumi, A., Sakurai, H., Ohata, T., Mori, K., Ochiai, A. \& Kawata, H. (1995). J. Phys. Soc. Jpn, 64, 23332337.

Ito, M., Nagayasu, R., Tadenuma, T., Suzuki, K., Sato, A., Adachi, H., Sakurai, Y. \& Önuki, Y. (2012). Key Eng. Mater. 497, 3-7.
Ito, M., Tsuji, N., Itoh, F., Adachi, H., Arakawa, E., Namikawa, K., Nakao, H., Murakami, Y., Taguchi, Y. \& Tokura, Y. (2004). J. Phys. Chem. Solids, 65, 1993-1997.
Jensen, J. \& Mackintosh, A. R. (1991). Rare Earth Magnetism: Structures and Excitations. Oxford University Press.
Kanai, K., Kiss, T., Yokoya, T., Schmerber, G., Kappler, J. P., Parlebas, J. C. \& Shin, S. (2001). J. Electron Spectrosc. 114, 741-745.

Kennedy, S. J., Brown, P. J. \& Coles, B. R. (1993). J. Phys. Condens. Matter, 5, 5169-5178.
Kobayashi, K., Nagao, T. \& Ito, M. (2011). Acta Cryst. A67, 473-480.
Krishnamurthy, V. V., Keavney, D. J., Haskel, D., Lang, J. C., Srajer, G., Sales, B. C., Mandrus, D. G. \& Robertson, J. L. (2009). Phys. Rev. B, 79, 014426.
Laundy, D., Collins, S. P. \& Rollason, A. J. (1991). J. Phys. Condens. Matter, 3, 369-372.
Lawrence, J. (2008). Mod. Phys. Lett. B, 22, 1273-1295.
Lovesey, S. W. (1986). Theory of Neutron Scattering from Condensed Matter. Oxford University Press.
Lovesey, S. W. (1987). J. Phys. C, 20, 5625-5639.
Murani, A. (2004). Physica B, 345, 89-92.
Rotter, M. \& Boothroyd, A. T. (2009). Phys. Rev. B, 79, 140405.
Sakurai, Y., Itou, M., Tamura, J., Nanao, S., Thamizhavel, A., Inada, Y., Galatanu, A., Yamamoto, E. \& Onuki, Y. (2003). J. Phys. Condens. Matter, 15, S2183-S2186.
Stassis, C., Loong, C.-K., Zarestky, J., McMasters, O. D., Moon, R. M. \& Thompson, J. R. (1982). J. Appl. Phys. 53, 7890-7892.
Suzuki, K., Ito, M., Tsuji, N., Adachi, H. \& Kawata, H. (2009). Jpn. J. Appl. Phys. 48, 056506.
Williams, W. G. (1988). Polarized Neutrons. Oxford University Press.
Yaouanc, A., Dalmas de Réotier, P., Sanchez, J. P., Tschentscher, T. \& Lejay, P. (1998). Phys. Rev. B, 57, R681-R684.

